
Page Contents

 Common Uses for Git ... 1

 Expectations and Assumptions .. 1

 Introduction to Version Control ... 2

 Installing Git on Windows .. 4

 Using the Command Line ... 6

 Registering for GitHub .. 8

 Configuring Git ... 8

 Creating a Repository ... 9

 Initializing a Workspace ... 10

 Committing Changes .. 11

 Stashing and Reverting Changes .. 12

 Using Branches .. 13

 Using Pull Requests .. 14

 Additional Resources ... 15

 Using Git

& GitHub

Additional Resources
If you aren’t a version control expert after reading this booklet, don’t worry. You have

only been introduced to the laundry list of features provided by Git and GitHub. What

you have learned should be enough to make use of core version control principals but

there is plenty more to explore. Try reading some of the resources below or just trying

new things by yourself with an experimental repository.

To learn more about version control, Git, or GitHub, check out the following websites:

 https://try.github.io/

 http://git-scm.com/book/

 https://help.github.com/

To learn more about command line interfaces in Windows, try these websites:

 http://codeproject.com/Articles/457305/Basic-Git-Command-Line-Reference-for-

Windows-Users

 http://gitref.org/

 https://dosprompt.info/

Graphical interfaces for using Git are available from the following websites:

 https://windows.github.com/

 http://sourcetreeapp.com/

15

Often, a new branch is used in the workspace to make a series of changes. After these

changes have been committed, reviewed, and pushed to the repository they need to

be merged into the master branch. Pull requests provide an interface for reviewing

and merging changes from one branch to another.

1 Create Request: On the

GitHub repository page, select

the branch you want to

merge and click on the “Pull

Request” link located above

the file list. Alternatively, if

the branch is new GitHub

will show an orange box

with a “Compare & pull

request” button. GitHub will

provide a simple form to

create the pull request with a title and description. Above the form is a blue box which

you can use to specify which branch to merge into. It should default to master, which

is what we want. Below the form is a list of commits and a “diff,” or comparison of

changes between the two branches. Once you know that the changes are correct, fill

out the form and click the “Create pull request” button.

2 Merge: After creating the pull request, you will be brought to the web page for

that request. Normally this would provide an opportunity for other contributors

to inspect your changes and provide feedback. When the pull request has been

reviewed, merge it by clicking on the “Merge pull request” button, then the “Confirm

merge” button. A message can be provided if desired.

After merging a pull request, the

branch may not be needed any more.

The pull request page will offer a

button to delete the branch on the

repository. To delete the branch on your workspace, use the command git branch

–D <branch> where <branch> is the name of the branch you wish to delete.

Return to the repository page by clicking on the name of the repository at the top of

the pull request page. The master branch on the repository change should now look

the same as the branch which was merged.

Using Pull Requests Common Uses for Git

Expectations and Assumptions

When working as a team on a project with many documents, it can be very frustrating

trying to keep things organized. When passing files around, it can be a struggle to

know which version is the most recent. Two team members may want to do work on

the same file at the same time for entirely different reasons. If they each work on their

copy of the file, which do you keep

at the end? How do you combine

their changes?

A file server or shared folder can

help keep all of the files in one place, but editing with multiple people is still

troublesome. For some files, a collaborative editor such as Google Docs may help

mitigate the issue, but simultaneous editing can be confusing and there are few editors

which are truly designed for it. What we really need is a tool to allow multiple people

to work on the same file

and easily combine their

changes.

Git is a version control

software solution. It is

designed to allow multiple contributors to edit a pool of files located in a repository.

GitHub is a website which hosts Git repositories. Although other version control

solutions and repository hosting sites exist, Git and GitHub are particularly popular and

powerful.

Primary Features of Git

 Can combine multiple sets of changes to a single text file

 Shows which contributor is responsible for each change

 Allows changes to be removed or reverted

 Makes it easy to finalize and distribute specific versions

This booklet is designed to teach fundamental version control concepts and explain

how to use these concepts with Git and GitHub. Both tools offer a plethora of

additional features, but after finishing these instructions you will be able to set them

both up and properly use their primary features on a Windows computer. Since Git is

most often used via a command line interface, basic instructions on how to use the Git

Bash software will also be provided.

Before beginning these instructions, it is assumed that you are familiar with some

basic functionality of a modern Windows computer. This includes the ability to start

programs, navigate the file system using the Windows Explorer software, and navigate

to and interact with web pages. If any of these tasks sound unfamiliar, it is

recommended that you learn them before continuing with this booklet.

1 14

Although Git is most often used for programming

projects, it works well with any projects which use

plain-text files. This includes web development,

LaTeX, markup, or simple text documents.

1

2

Branches were introduced previously as a useful means for contextualizing a series

of commits. They allow for multiple versions of the repository to exist based on the

“master” commit path. To create a new branch, you must specify a commit within an

existing branch to act as a starting point. Generally, you start a new branch from the

last commit in another branch (usually the “master” branch).

1 Fetch: First, we need to make sure that the workspace is completely aware of

any new commits on the repository. Since it does not automatically update

whenever new commits or branches are added to the repository, we must manually

tell the workspace to update. Type the command git fetch origin to update

local information about the origin remote.

2 Creating a Branch: To create a new branch from master, enter the command

git checkout origin/master –b new_branch. Again, we see “origin” and

“master” in the command which can

be substituted for any remote or

branch name on the specified remote.

The “-b new_branch” section tells Git to create a completely new branch based on

origin/master with the name new_branch. Notice the branch name change from

“master” to “new_branch”. To switch back to master or another branch, use the

command git checkout <branch> where <branch> is the name of the desired

branch. Just typing the command git branch will also show you a list of all branches

on your workspace.

3 Commit: Once we have a new branch, we can change something and commit

normally (page 11). Almost all of the steps are the same as when committing to

master. The only difference is that instead of pushing with git push origin

master, we use the command git push origin new_branch. Create a new file,

add the change, commit, and push new_branch to the repository.

4 Viewing Repository: Navigate to the

repository on GitHub. When you open

the repository page, you can see any changes

you made on the master branch. If you want

to see changes for new_branch, you must select it from the

branch dropdown list. Click on the branch selection box and

select new_branch. Now the page should show all changes

for the newly created branch.

Instead of saving a whole file, version control software works by saving sets of changes

made to the files within repository. These groups of changes are called commits. By

using commits, users are able to work on the same file simultaneously because their

commits will remain separate. Sometimes two commits will conflict with each other

when both are applied, but in these cases the version control software can identify

which changes are affected so that they can be easily resolved.

When a repository is first created, it will be empty. To make changes to the repository,

a user will need to set up a local workspace. The workspace is a folder which contains

local copies of the files from the repository. It allows you to pull down commits from

the repository - updating all of the files in the workspace - and push new commits up

to the repository. After the workspace is ready, you will be able to push your first

commit.

In the commit diagram to the right, the first

commit is represented by the dot labeled “A.”

This commit is the first set of changes made to

the repository, so it will involve creating one or

more files. Each commit after A is attached to

the previous commit, creating a chain or series

(see commits “B” and “C” in the diagram).

These commits can involve adding new files,

changing existing ones, or even deleting files.

As a general rule, the changes within a commit

should be related. This is because commits can be removed if it is later decided that

the changes are not wanted. If many unrelated changes are a part of the same

commit, it is likely that only some of the changes will need to be removed but the

whole commit will have to be removed anyway. The unrelated changes will then have

to be added back to the repository manually with a separate commit. Keeping changes

related also helps a team understand the purpose behind a commit without inspecting

each individual change.

Using Branches Introduction to Version Control

commit
1/2

4

3

13 2

In addition to commits, Git offers features called branches. A branch is simply a series

of commits, which result in a particular set of files. By default, the repository is

created with a single branch named “master.” This is usually the branch with “official”

files that everyone is working on.

Like a tree, branches split from other branches. In the top diagram a new branch,

appropriately named “new_branch,” is created based on commit C of the master

branch. The files in master will still only consist of the changes in commits A, B, and C.

However, the files in new_branch will consist of the changes in commits A, B, C, and D.

We can continue adding

additional commits to either

branch and they will remain

separate paths.

Often times branches are

used when making a set of

changes on the workspace. A new branch is created on the workspace based on the

latest commit in the master branch. Commits are added to the branch until all desired

changes have been made, then the branch is pushed up to the repository. In the

repository, a feature called a pull request allows the commits in a branch to be

reviewed by the other contributors and then merged into the master branch. In the

example diagram, a pull request from new_branch into master would append the

commits D and E onto the end of master, immediately after commit G.

The repository also provides forks. A fork is basically a copy of a repository for an

individual contributor. A contributor can push to his fork instead to avoid adding

branches to the primary repository. Pull requests can then be made from branches on

a fork to branches in the primary repository.

Sometimes you might be in the middle of making

changes for something when a higher priority

change comes up. How do you switch to making a

separate set of changes without committing

unfinished work or loosing your progress? Git

provides us with the git stash command for these situations.

1 Change Something: Make a simple modification to a file in the repository and

save the change. The git status command should reflect this change.

2 Stash: Next, enter the command git stash to temporarily revert the file back

to what is on the repository. The changes are placed at the top of a “stack” of

changes. If you do not

immediately notice the

changes, you may need

to re-open the file.

Once again, git

status will confirm the

changes by showing you

that there are no

modified files. Now

your workspace is ready

to work on another task.

3 Pop: After the task has been finished and committed, you can recover your

previous changes with the command git stash pop. This command “pops”

the changes from the top of the stack of changes which, as long as no other changes

have been stashed, will be the changes you made previously.

Sometimes you modify a file and later decide you want to remove those modifications.

You could try to undo all the work manually, but there is an easier way. The git

checkout command is used to copy content from the repository to your local

workspace. It can be used to copy entire branches or

just single files or folders. In this case, we only want to

checkout the file we modified earlier.

4 Revert: To checkout the file, enter the command git checkout <path>

where <path> is the relative path of the designated file. Again, the git status

command should reflect the changes by no longer showing the file in the change list.

Stashing and Reverting Changes

original branch

new branch

pull request

1

2/3

4

3 12

1 Change Something: It’s finally time to create

a commit. First we make a simple change to

the repository by creating a new file.

This can be done a number of ways, but

the simplest is to open Notepad and

save a new file in the workspace.

While in the workspace on Git Bash, try entering the command git status. This

shows us that a file has been created or modified but is not selected to be a part of the

commit.

2 Add Change: To select files to be committed, use the command git add

<path> where <path> is the relative path of the designated file or folder. Also,

the command git add –A can be used to add all files in the list. Now if you enter

the git status command again, you can see

that the file had been “staged” for the commit.

A file can be removed from the staging list by

typing git reset <path> where <path> is

the path of the designated file. The git reset

command can also unstage all files in the commit if <path> is omitted entirely.

3 Commit: To finalize the commit, enter the command git commit –m

“<Message>“ where <Message> is a

brief description of what has been changed.

The message part may seem trivial, but it is

important to communicate why a change

was important to others and possibly even

your future self.

4 Push: Lastly, to add the commit to the repository use the command git push

origin master. “Origin” is the name of the remote which references the

primary repository and “master” is the name of the current branch. You will need to

provide your GitHub name and password to push.

1 Download: To get the installer, navigate to http://git-scm.com/downloads on

your preferred browser. Once there, select the “Windows” link from the box

under the “Downloads” header. If you are using

another operating system, select the appropriate

link. Although the installer will not be exactly the

same, the installation steps should be very similar to

those for Windows. After clicking the link, the file

should automatically download.

2 Start Installer: Locate the file and run the installer by opening it. If a popup

asks if you want to allow the installer to execute, select “Yes.” The installer

should greet you with a welcome page. Click the “Next” button twice to skip both the

welcome page and the license agreement. Don’t forget to “read” the license

agreement carefully.

3 Configuration: The next three pages ask about where to install the software,

which components should be included, and where the start menu shortcuts

should be placed. Only modify the values on these pages if you feel comfortable with

them. For most users, the default parameters are appropriate for all three pages.

Click the “Next” button three more times to continue.

Committing Changes Installing Git on Windows

*

*Make sure that the

1

2

3

1

2

3

11 4

1 Create Folder: A folder must be setup locally to read, create, and modify files on

the repository. This folder is commonly referred to as the workspace. From the

command line, we can use the mkdir command to make the workspace folder. On Git

Bash, make sure you are in the folder where you want to create the workspace. For

most, the home folder is a good folder to choose. Once you are in the correct folder,

type mkdir <name> where <name> is the name of the workspace folder (usually the

repository name). Next, open that folder with the command cd <name>. Notice that

the path above your command line changed to the path of the workspace.

2 Initialize Git: To designate the current working folder as a git workspace, simply

type the command git init. If the Windows option to show hidden files and

folders is turned on, you should notice that a new folder named “.git” was created in

the workspace. This folder contains all of the Git information in the workspace. If you

ever want to remove the workspace designation, simply delete the .git folder (try the

command rm –r .git). If you cannot see the .git folder in your workspace, try using

the command ls –A.

You may also notice that “(master)” was added after the path above the command line

prompt. This tells us that we are on the branch named “master.” We’ll cover more on

how to use branches later.

3 Add Remote: Lastly, we need to add the GitHub repository to the workspace as a

remote. A remote is a reference to a repository which can be used in the

workspace. The primary remote for a workspace is usually called “origin,” so we can

use the command git remote add origin <HTTP> to add our new remote

named “origin”, where <HTTP> is the HTTP address of the repository we recently

created. In this instance we are calling this remote “origin” because it is the standard,

but any name can be used in the command when adding a new remote. SSH addresses

can also be used in place of HTTP addresses, but they require some additional setup.

4 Command Interface: The

next page in the Git installer

provides you with three options.

The first option, “Use Git from

Git Bash only” is the default

selection. However, it is

generally safe to select “Use Git

from Windows Command

Prompt.” This selection extends

compatibility for Git commands

to the Windows Command Prompt. We will not be using this feature for the sake of

these instructions, but it is useful for users who prefer using the built-in Windows

command line interface. Go ahead and select either the first or second option, then

click the “Next” button.

5 Line Breaks: Three more

options are presented on

the second page. This time, the

options affect how line breaks

are treated in text files.

Windows treats line breaks

differently from other operating

systems, so some editors such as

Notepad will have trouble

reading line breaks in files from

other operating systems. Git

provides a feature which can

automatically convert other line breaks into Windows-style line breaks when files are

retrieved from a repository. It will also convert them back before committing changes

to the repository. There are very few instances where this feature is not desirable, so

it is safe to leave the first option selected and click

the “Next” button.

6 Finish: Deselect “Open ReleaseNotes.rtf” on

the final page and click the “Finish” button.

Git and its primary components should now be

fully installed and ready to run.

Initializing a Workspace
4

5

6

1/2/3

5 10

1 New Repository: We need to create a

repository to work with on GitHub. If you are

logged in on https://github.com/ you’ll see a series

of tutorials on the front page. These can be very

useful for beginners, but for now just click the “New

repository” button.

The following page requests a name and description

for your repository. These fields are fairly straightforward and they can be almost

anything you’d like as long as the name is not taken by another user.

2 Configure: Next it asks whether or not the repository is public or private.

Private repositories will only be

visible to invited users and require

either a payed plan or for you to

register your account as an educational

one using a valid university email

address. The remaining fields can be

ignored. After completing the form,

click on the “Create repository”

button.

3 Get Repository Link: When you click the button, GitHub will bring you to your

empty repository page, which provides many suggestions for getting started. The

most important part of the page for now is the blue box which provides the HTTP and

SSH addresses of the repository. These addresses will allow us to connect to the

repository using Git locally. For these instructions we will be using HTTP addresses,

which require a name and password any time a connection is made between Git and

GitHub. For information on how to setup a repository with SSH links instead, visit

https://help.github.com/articles/generating-ssh-keys/.

The command line is a simple interface for executing tasks on a computer. Instead of

interacting with pictures and buttons, a user simply types a command and presses the

“Enter” key. Of course, it is impractical to do everything in a command line as it

requires memorization of commands and can sometimes be much slower than its

counterpart, the Graphical User Interface (GUI).

Unfortunately, while GUI software for using Git is available, some options are daunting

for beginning users while the others simply do not offer more than the most basic

features. This booklet will focus on using the command line interface for Git since it

allows for all of Git’s features to be used without presenting too much information for

basic users to be comfortable with.

If a GUI is still preferable, the most popular options are GitHub for Windows by GitHub

(available at https://windows.github.com/) and SourceTree by Atlassian (available at

http://sourcetreeapp.com/).

When Git was installed, a command line software called Git Bash was installed with it.

Git Bash emulates the popular “Bash” command line interface used on many other

operating systems. Although Git is usable in the Windows Command Prompt, Git Bash

is typically the preferred interface. The Git-specific commands are almost identical

between the two interfaces, but the more basic system commands can be very

different. For more information on how to use the Windows Command Prompt, check

out http://dosprompt.info/.

Try opening Git Bash to see the basic command line interface. After the introduction

text, you should see a line which shows the Windows username of whatever account is

logged in, an “@” symbol, and the name of the computer. In the example image, the

username is Branden and the computer’s name is Alexus. Following is a “~” or a tilde

character. It represents the folder which is currently open. More specifically, it

represents the “home” folder.

Creating a Repository Using the Command Line

1

2

3

9 6

1 Configure: Before using Git, you must configure Git to use your name and email

address for GitHub. You can do this by opening Git Bash and entering the com-

mands git config --global user.name “<Username>“ and git config

--global user.email “<Email>“ where <Username> and <Email> are the

username and email address used to register with GitHub. Be sure to note that there

are two dashes before each “global.”

1 Sign Up: To use GitHub, you must have a

registered account. Navigate to GitHub at

https://github.com/ in your preferred browser and

submit a username, email address, and password to

create new account, then click the “Sign up for

GitHub” button.

2 Select Plan: The next page will ask you to

select an account payment plan. The free

plan allows for unlimited public repositories and

some private repositories for students and

educators with valid email addresses. For most

users, the free plan is enough. Make sure that

“Help me set up an organization next” is not

checked and click the “Finish sign up” button.

Folders (sometimes called

directories) organize a

computer’s file by grouping

them and nesting within other

folders. Root folders in

Windows are represented by

drives. On most systems, the

root folder or drive will simply

be labeled “/c.” The Windows

Explorer labels this as “C:\”

Paths are addresses used to show where a file or folder is located. They list every

folder between the root and the specified file or folder separated by a slash. For

instance, the absolute path for J.txt in the diagram would be “/c/H/I/J.txt.” If a path

begins with a slash, it is called an absolute path and always starts at the root directory.

Without a starting slash, it is a relative path and depends upon the current folder.

From H, the relative path for J.txt

would be “I/J.txt.”

One folder will also be set as the

home folder, represented by the

“~” character. For Windows, the

home folder defaults to “/c/Users/<Username>“ where <Username> is the account

name of the user who is currently logged in.

Interacting with files and folders in the command line is very similar to using the

Windows Explorer program. To see the contents of the folder you’re in, type the

command ls (remember to press enter to submit a command). To change folders,

type cd <path> where <path> is either the relative or absolute path of the folder

you want to go to. Additionally, you can type cd ~ to go to the home folder or cd ..

to go up to the parent folder. Other system commands are given by the table below.

Registering for GitHub

pwd Display the path of the current working folder

ls List all files and folders in the current working folder

cd <path> Change the current working folder

mv <path> <path> Move a file or folder to another path

cp <path> <path> Copy a file or folder to another path

rm <path> Remove a file or folder (must provide –r for folders)

mkdir <path> Make a new folder

exit Close the command line interface

Configuring Git

1

2

1

7 8

Quotes are not normally necessary to denote a

path, but if any file or folder has spaces in it, a

path must be wrapped with quotations. This can

be avoided by using underscores (or “_”) instead

of spaces when naming files and folders.

